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1. Introduction 

Numerous teams at Sandia National Laboratories develop in-house 
codes for problem setup and computation in multiple domains of 
physics and engineering. These codes are actively developed, 
continuously evolving, and require significant, ongoing learning on the 
part of users. The Sandia Analysis Workbench (SAW) is a family of 
desktop applications that was developed to provide an integrated 
interface to many of these codes, and to improve their ease of use by 
providing contextual information and tools that simplify and streamline 
common operations. Using the Workbench, users can build models, 
submit and manage HPC jobs, visualize results, share and store 
models and results in context with versioning and dependency tracking, 
and more. Because a diverse array of in-house and commercial tools 
must be integrated using limited resources, we use a component-
based, data-driven approach in which tools are treated generically and 
customization is handled as much as possible by configuration files. 
This approach allows developers to concentrate on specific areas with 
high value for the end user. 

While many of the codes integrated into the Workbench have scripting 
capabilities, overall sequencing of code execution – or workflow -- has 
until now been handled manually. A Workbench user invokes 
operations like model building, job submission, and post processing as 
distinct, deliberate actions. While sufficient for simple use cases, 
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manual workflow becomes burdensome for more complex situations, 
and does not allow users to repeat, archive, and share workflows.  

Recently, we began to recast our architectural components as nodes in 
an explicit workflow graph. The addition of a robust, configurable 
workflow engine supports validation, verification, and uncertainty 
quantification (V&V/UQ) activities by allowing combinations of 
Workbench components to be used for repeatable, automated 
executions of parameterized models, enabling sensitivity analysis, 
optimization, and other compound operations with minimal user effort. 

In this paper, after first presenting some motivation from the literature, 
we will discuss the SAW architecture and give an overview of the data-
driven, component-based strategies we use for integrating tools. We’ll 
also discuss our planned architecture for adding a workflow capability, 
our initial implementation, and the challenges we will face as we scale 
the system up for future simulations in the exascale regime. 

2. Motivation 

Page, Canova, and Tufarolo (1997) noted three categories of modelling 
and simulation (M&S): live, virtual, and constructive. “Live” referred to 
simulations involving live individuals, “virtual” referred to individuals 
interacting with simulators, and “constructive” referring to simulations 
invoked by executable computer programs. For the purposes of this 
paper, only “constructive” M&S is fully considered, and is frequently 
referred to as computational simulation. This distinction is important, as 
considerations of iterative, executable workflows and maturity models 
may have limited applicability to the other categories. 

Sargent (2013) provided a useful, general (though simplified) 
description of the M&S development process. It contained three major 
components: the problem entity (the system to be modelled), the 
conceptual model (a logical representation of the problem entity), and 
the computerized model. Each of these three entities is connected 
through data, and provides for iterative feedback between them. Gore 
and Diallo (2013) provided a similar overview of the M&S process. This 
process approach also implicitly overlaid a lifecycle on the model, in 
that at any given time a model may be considered being in one of the 
component areas. Furthermore, Sargent specifically noted the need for 
V&V activities at each of the component areas. This particular process 
does not directly consider cases where the problem entity may have 
more than a single conceptual model, or the conceptual model may 
have more than one computerized model. In such a case, the lifecycle 
“state” would be tied to a particular expression. Such an expanded 
multi-faced expression, however, re-emphasizes the need for good V&V 
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activity tracking in order to ensure than a given conceptual or 
computerized model remains consistent with the problem entities 
requirements. In addition, it is clear that N expressions of the 
conceptual or computerized model may entail different assumptions. 
Maintaining full traceability between these assumptions, the V&V 
evidence, and the original problem entity is critical in order to support 
the credibility of the final results. 

Conwell, Enright, and Stutzman (2000) extended Sargent’s M&S 
process model, by emphasizing the V&V activities necessary to support 
the process. The starting point for the problem entity in this model is a 
requirements definition specifying the operational needs in terms of 
functionality, fidelity, and credibility. From this starting point, 
requirements traceability through the V&V activities is the cornerstone 
of this enhanced process. The authors also augmented Sargent’s 
model with capability maturity model (CMM) points. They made explicit 
that certain key process areas backed with requirements traceability 
can result in an increased and documentable CMM level. In general, 
more repeatable and documented processes following identified key 
process activities (KPAs) will result in a higher CMM level. As Balci, 
Nance, Arthur, and Ormsby (2002) noted, it is likely that an M&S 
executed by an CMM Level 3 organization will have more credibility 
than developed by a Level 1 organization. In addition to “cost and effort 
reduction that may be available once standardized practices are 
available” (Balci et al., 2002), it is also implied that such processes will 
reduce the full potential scope of V&V activities. It is an open question 
as to whether organizations that have great diversity in the M&S 
activities can standardize across the entire organization, and to a 
certain extent accept the implied or explicit constraint of V&V activities.  

Restriction of the tools, V&V selection, and how they operate in concert 
is not necessarily an impediment. Allen, Shaffer, and Watson (2005) 
noted that pulling modelling tools into an integrated environment (IDE) 
can reduce risk by encouraging particular tool and process usage. In 
addition, undertaking M&S activities within a defined IDE can directly 
support model branching while maintaining traceability. An IDE can also 
support traceability through the oft-neglected need to store artifacts 
from a given V&V activity. These artifacts provide the evidence that 
underlies model credibility. In an environment in which an individual can 
choose any tool and any V&V activity at any point requires that 
individual to be a supreme librarian. IDEs that provide validating and 
structured editors, workflow execution, and artifact management (which 
may be considered a part of an overall configuration management 
requirement for the evolving and potentially multiple models) are likely 
to be more effective at ensuring V&V is incorporated throughout the 
lifecycle. 



The ability to select particular V&V activities at a given point through an 
IDE suggests the ability to realize the recommendations of Wang 
(2013). As Wang noted, “conducting model verification and validation 
requires systematic selection and application of different V&V 
techniques throughout the M&S life cycle” (p. 1233). The selection 
criteria, however, are not necessarily obvious in the absence of 
guidance, especially since each model is unique with regards to its use, 
specific purpose, and embedded assumptions (Sargent, 2013). As 
Wang noted, there are more than 100 potential V&V activities, but in 
practice only limited number are utilized. Vegas and Basili (2005) 
suggested that a lack of theoretical or empirical knowledge is often the 
basis for this limited number of V&V activities used in practice. Balci 
(1998) proposed a taxonomy for V&V activities that had four groups: 
informal, static, dynamic, and formal. Wang (2013) in examining Balci 
noted that a particular V&V activity is dependent not only on the 
characteristic of the technique, but also the context of its application. In 
addition, Wang provided an explicit cost component to the V&V activity 
selection. As suggested above, model iterations will require re-
execution of a V&V activity in order to maintain the application of V&V 
throughout the lifecycle. As a result, selection of a V&V activity must be 
cost-effective (as emphasized by, e.g., Page et al., 1997) in reference 
to a model as well. 

“Domain experts often do not perform sufficient model VV&T [validation, 
verification, and testing] due to a lack of accessible support for these 
activities in modelling tools” (Allen et al., 2005). Executable workflows 
tied to V&V activities (as opposed to the overall model lifecycle) may be 
especially important given the inherent iterative nature of model 
development. Traceability provides the guidance for when an 
assumption (or requirement) at one point drives changes throughout the 
entire model chain. V&V executable workflows allow re-executing V&V 
tasks in a structured, repeatable fashion to ensure the model remains 
credible within the existing requirements. Integrating the V&V activity 
selection into executable workflows accessible within an IDE appears to 
be a promising avenue for both domain expert efficiency and more 
credible M&S outcomes due to increased robustness in the utilization 
and traceability of the V&V activities. 

3. The Sandia Analysis Workbench 

Given the best practices discussed in the preceding section, we chose 
an implementation strategy based on the idea of an integrated 
development environment for model development and execution. Our 
organization’s structure as a loose federation of science and 
engineering groups led us to adopt an architecture based on 
independent and highly separable components. Some components are 
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self-contained, while others are wrappers for in-house or third party 
tools. 

Our range of integrated applications and the architecture they are built 
on are collectively referred to as the Sandia Analysis Workbench 
(SAW). We build a flagship “Enterprise Edition” desktop application 
which incorporates almost all of our components, and also a number of 
smaller, lighter-weight editions that each include tools useful in specific 
narrower user domains. In this paper we’ll primarily discuss the general 
architecture we’ve used to create this collection of modular 
components. 

Eclipse. Our architecture is based on the Eclipse framework. The 
Eclipse IDE was originally developed at IBM as a Java development 
environment. The core of Eclipse (itself written in the Java language) 
was later extracted and became the basis of a general application 
framework for building modular applications. The Eclipse Platform, built 
on the OSGi component framework, provides a complete set of 
primitives for managing the lifecycles and interactions of a system of 
separate but complementary components. The Eclipse Rich Client 
Platform (RCP) implements a graphical interface on top of that 
framework, Applications built using the Eclipse Framework and the RCP 
are portable to many platforms and include both graphical desktop 
applications and headless server applications. Our set of integrated 
applications contains both graphical and non-graphical instances, as 
will be discussed. 

The fundamental unit of composition in Eclipse is the OSGi plugin. Each 
plugin is a separately loadable software unit. A minimal plugin can 
contain nothing but declarative data stored in a manifest file, but most 
plugins contain Java code, Java or native libraries, images, scripts, and 
other data. A plugin can have no user interface, or optionally it can have 
a graphical user interface (GUI) that appears within the IDE 
“workbench.” It can also contribute menu items or other additions to 
customize the GUIs offered by other plugins. As used in SAW, each tool 
to be integrated is implemented as one or more plugins. Typically this 
small group of plugins – which we loosely refer to as a component -- will 
have compile-time dependencies among themselves, but will not 
directly depend directly on plugins supporting other tools. 

A plugin can depend on and interact explicitly with other plugins, but 
ideally plugins interact more abstractly through the use of Eclipse 
extension points. An extension point is a declarative (XML) description 
of a service that one plugin can offer to another. A plugin satisfies an 
extension point by implementing an extension. It is possible to query the 
Eclipse framework for all the extensions that implement a particular 



extension point. In this way, a consumer of a service (as defined by an 
extension point) can do so without compile-time knowledge of any 
plugins that provide that service. This means that multiple applications 
can be composed by selecting from a set of components, according to 
user needs. Each component can discover at runtime the providers or 
consumers of any services it involves. Component developers 
concentrate on delivering specific services and need not worry about 
how those services will be combined.  

This architecture based on plugins and extension points allows us to 
use a technique called a bridge plugin to allow individual teams to 
develop separate but interacting plugins while operating with a great 
deal of autonomy and minimizing the need for communication between 
groups. A bridge plugin is a plugin A that implements an extension point 
declared in a plugin B in terms of the capabilities of a third plugin C. In 
this way plugins B and C (which generally interface to different tools 
and are created by different development teams) can directly interact 
even though the plugins have no interdependencies and the teams 
implementing them may in fact be completely unaware of one another. 

Our set of components includes wrappers for the SIERRA suite of 
analysis codes as well as a few other analysis codes, for the CUBIT 
meshing and geometry library (Owen, 2009), the DAKOTA optimization 
library (Adams, et al, 2014), and other tools. It also includes 
components for general model building, parameter management, 
response extraction, data management, requirements management, 
remote computational job submission and monitoring, remote 
visualization, and more.  

Declarative Component Definition. Many of our wrapper components 
are quite detailed and contain significant information about an external 
tool. While users want to see a GUI that exposes all the capabilities of 
the wrapped tool, hard-coding the necessary information (often in the 
form of input file syntax) would be both prohibitively expensive and very 
fragile as the codes evolve and syntax is added and removed. As a 
result, whenever possible we use a data-driven or declarative approach 
in which the syntax of a code is described in a data file, and graphical 
interfaces are generated at runtime from that description. Besides the 
reduction in implementation effort, ancillary benefits include a consistent 
appearance of generated GUI panels and easier and more complete 
testing and validation. 

In some cases the developers of the wrapped code create the syntax 
definition file or can maintain it themselves, but in other cases that task 
falls to the integration team. It is still often better to use a declarative 
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approach because changes in the wrapped code are easier to track and 
test. 

We do not mandate a format for declarative description of input syntax, 
but rather try to accommodate formats created by various other 
development teams. Most tools use some form of XML. SAW includes 
several code generators that are driven by these various formats. 

It is often the case that specific features of a code suggest a unique 
graphical interface presentation that cannot be specified within a simple 
general-purpose description format. As way of maximizing both optimal 
user presentation and simplicity of the format, we provide escape 
mechanisms for these cases in which hand-coded GUI panels can 
replace generated ones for specific syntax features. We have found this 
to be an optimal compromise between generated and hand coded 
GUIs. 

Data Management. One central component of the Sandia Analysis 
Workbench is the Workbench Server that stores data in a commercial 
product data management (PDM) system. Our data management 
component (which interfaces to the Workbench Server) provides 
versioned storage, maintains relationships between artifacts, and is the 
basis for data security. Our data management model stores everything 
in a project. A project has an associated team that can access those 
files; access can be granted to individuals outside the team using 
access control lists integrated with our Laboratory’s directory system. 

Our data management system was originally developed for interactive 
use, but over time have been interfaced to other tools in the Workbench 
including job submission and requirements management; in both cases 
the interface to data management adds useful capabilities to the other 
tools. All parts of a model and all related resources can be stored in 
context in our data management system. 

4. Adding a Workflow Engine 

A previous section of this paper discussed the value of an IDE for 
modelling and simulation, and feel that we have created a capable IDE 
for M&S at our organization, to the extent that our collection of 
components provides easy access to a range of tools and aids in their 
use both singly and in combination. To take the next step we are adding 
automated workflows that orchestrate the use of all of our components 
in a robust and repeatable way. By doing so we hope to ease the 
introduction of more rigorous V&V/UQ into our M&S process as well as 
to improve quality and traceability. 



To that end, we have begun to map our set of components onto 
workflow elements that can be composed into workflows and executed 
under the control of a formal workflow engine. In this section we’ll 
discuss the capabilities of a workflow engine, discuss our planned 
architecture, and describe the current status of our implementation. 

Definition of Workflow. If we adopt the definition of an action as 
something that can be executed, a process definition as a directed 
graph of interconnected actions that need to be performed, and a 
process as an actual instantiation of a process definition, then a 
workflow engine is just software which can load a process definition and 
from it, generate and execute a process. A workflow engine will 
generally offer the ability to connect actions in various ways, to force 
some actions to wait for the completion of others, and to retry or restart 
failed actions. A robust workflow engine will be able to persist the state 
of a process and report on it as it runs. Typically a workflow engine will 
include ancillary software to assist in creating process definitions, often 
in the form of a graphical builder. 

Individual actions generally need to communicate: they must 
communicate their status with the workflow engine, and often must 
communicate data with other actions. In the typical directed graph 
illustration of workflow (see Figure 1) it is important to realize that the 
edges represent sequencing of actions and do not necessarily 
represent data flow. The two kinds of communications (with the engine, 
and with other actions) can and often do occur via separate channels. 
Communication with the workflow engine is often implicit; an action can 
communicate its status simply by completing, as when a launched 
program exits. 

 

Figure 1:  A diagram of a simple workflow showing various arrangements of 
interconnected nodes, including parallel tasks, branches, and error handlers. 
It is important to realize that the edges represent sequencing of actions and 

do not necessarily represent data flow. 
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Proposed Architecture. Notionally, our proposed architecture for M&S 
workflows is simple. Individual existing components within the SAW 
framework implement a Java interface defining the characteristics of an 
action, including required inputs and outputs. A new workflow 
component then makes these actions available to an embedded 
workflow engine. The engine executes workflows by invoking the 
components as actions, and each component is responsible for 
communicating in its own way with any wrapped external tool, launching 
and monitoring it locally or remotely as required and reporting its status 
back to the workflow engine. 

The specification of each input and output will of necessity be fairly rich. 
In addition to a name, each input and output must have a data type 
(integer, character string, JPEG file) and a description of acceptable 
communication channels. For example, some tools may accept inputs 
via files on disk, others via UNIX pipes, and others by command-line 
arguments; some may be able to use more than one channel. Any 
information about the specified communication channel to be used by a 
process is communicated to the components; it is then up to the 
components to establish the channel and transfer the required data. 

Process execution should be possible both in a graphical interactive 
mode and in a detached mode where the engine runs unattended on a 
server. Therefore neither the actions themselves nor the workflow 
engine must require the presence of a GUI. 

5. Current Status 

As the first step in realizing the architecture described in the previous 
section, we have embedded a third-party workflow engine into our 
framework. At this time we are using Google Sarasvati, although we are 
not tied to this product and may change it in the future (other candidates 
include Activiti and jBPM). We provide a standard interface for an 
action, and currently have several implementations based on existing 
plugins in our framework. Our action interface is still evolving as we 
gain experience with our implementation. 

Currently, we don’t expose a process description editor to the user. Our 
process description is generated internally based on a simulation model 
as built by the user, and is generally quite simple (see figure 2). There 
is a sequence implicit in the combination of codes invoked as part of the 
model, and so our process definitions are based around this simple 
linear process definition. The main process definition is then augmented 
by the addition of response elements added by the user, which are 
basically probe calculations that can be attached to other components. 



 

Figure 2:  A typical process definition generated by our current workflow 
component. A simple one- or two- step meshing/simulation workflow is 
augmented by the addition of an arbitrary number of “response” elements 
(here, computing Jacobians for the mesh and extracting two quantities from 
the simulation results) created by the user. These workflows can be run singly 
or as part of a parameter study or optimization loop using DAKOTA. 

The communication channel type for many of our components is 
implicitly file-based. Components in the Workbench marshal files for 
their wrapped tools and ensure that appropriate paths are passed from 
one action to the next. This works because all of the wrapped tools are 
inherently file-based as well. 

Our system can run multiple concurrent processes. Because many 
actions actually consume little or no local CPU during execution (since 
they are merely a wrapper for remote execution of a simulation code,) 
this presents so significant problems. However, our complete workflow 
system cannot currently be run in a non-graphical mode; it must 
execute in the context of an interactive application. This places a 
practical limit on the length of time that any one process can run, and 
also on the number of concurrent processes that can be executed. 

Even given the simple nature of our generated workflows, we are 
already seeing some real benefits. It has now become a simple task to 
use our DAKOTA component to create and execute a wide range of 
sensitivity studies and optimizations that combine parameterized mesh 
generation with a solid mechanics, thermal or structural dynamics 
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simulation. Our current implementation provides an excellent laboratory 
for testing strategies and techniques for robust execution. 

6. Future Work 

As previously stated, our workflow system is in its infancy, but is already 
producing useful results. Our current work centers on removing many of 
the limitations of our existing implementation. For example, we are 
adding the ability for users to create custom workflow components, as 
well as to build complete workflows of their own design. We are also 
working toward a non-graphical host for the workflow actions and 
engine. 

One significant challenge that lies ahead is scalability to larger and 
larger simulations. In the near future (or indeed, even now,) storing 
simulation results in serial files will become impractical or impossible. 
Our architecture specifically addresses this by abstracting the notion of 
a communication channel such that a process description contains only 
a specification of the type of channel to be used, and processes 
augment that specification with only some channel parameters. It is 
expressly not the responsibility of the workflow engine to marshal data 
from one action to the next, but only to provide them with the 
information needed to communicate. As scalable I/O channels are 
created to enable exascale communication between tools, the workflow 
action input and output specifications can offer those mechanisms as 
options in building a process definition. Our data management system 
will also need to use a broader definition of data sets which can account 
for “virtual” data sets which represent a link in a dependency or 
provenance chain but which are too large to be preserved. 
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